Accelerating Computational Workloads: GPU Architectures,
Programming Models, and Applications

VASANTH PUGALENTHI, California Polytechnic State University, United States
JOAQUIN ARREDONDO, California Polytechnic State University, United States
SABAWOON HAKIMI, California Polytechnic State University, United States

TINH-PHONG NGUYEN, California Polytechnic State University, United States

Parallel computing has been transformed with the introduction of Graphics
Processing Units (GPUs), which provide previously unheard-of scalability
and performance for demanding applications like real-time simulations,
scientific workloads, and Al training. GPUs, which were once created for
graphics rendering, are now capable of handling hundreds of threads at
once, revolutionizing the way data-intensive tasks are carried out. With an
emphasis on their function in speeding up workloads in edge computing,
distributed systems, and network applications, this analysis investigates the
relationship between GPU-based parallel computing and networking sys-
tems. In order to satisfy the growing expectations of scalable performance,
high throughput, and ultra-low latency in contemporary applications, net-
working and GPU convergence is essential. The importance of GPUs in
accomplishing these goals is demonstrated by important use cases including
distributed machine learning, network function virtualization (NFV), and
real-time packet processing. Furthermore, new opportunities for parallel and
distributed task optimization have been made possible by the incorporation
of GPUs into distributed systems such as blockchain, federated learning, and
edge Al This review offers a targeted but thorough summary of recent devel-
opments in the field by looking at GPU-based solutions for network problems
such edge-based inference, scalable distributed computing frameworks, and
high-speed packet processing. For researchers and practitioners looking
to use GPU capabilities to handle the growing complexity of networking
systems, this work attempts to provide a fundamental resource.

CCS Concepts: « Do Not Use This Code — Generate the Correct Terms
for Your Paper; Generate the Correct Terms for Your Paper; Generate the
Correct Terms for Your Paper; Generate the Correct Terms for Your Paper.

Additional Key Words and Phrases: Do, Not, Us, This, Code, Put, the, Correct,
Terms, for, Your, Paper

ACM Reference Format:

Vasanth Pugalenthi, Joaquin Arredondo, Sabawoon Hakimi, and Tinh-Phong
Nguyen. . Accelerating Computational Workloads: GPU Architectures, Pro-
gramming Models, and Applications. , (), 12 pages. https://doi.org/XXXXXXX.
XXXXXXX

Authors’ Contact Information: Vasanth Pugalenthi, California Polytechnic State
University, San Luis Obispo, United States, vasanth.pugalen@gmail.com; Joaquin
Arredondo, California Polytechnic State University, San Luis Obispo, United States,
joaquinanthonyarredondo@gmail.com; Sabawoon Hakimi, California Polytechnic
State University, San Luis Obispo, United States, sabohakimi@gmail.com; Tinh-Phong
Nguyen, California Polytechnic State University, San Luis Obispo, United States,
tinhphong04@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM XXXX-XXXX//-ART

https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Brief History of GPUs

The concept of the GPU evolved from the early graphic controllers
used by microcomputers during the 1980s, and pioneering compa-
nies in the graphics acceleration field included ATI, Matrox, and
Nvidia [Peddie 2023]. The revolution of the GPU as a programmable,
not fixed-function, hardware occurred in the late 1990s when Nvidia
introduced the GeForce 256, which had transformation and lighting
(TL) in the processor [Peddie 2023].

Early GPUs performed fixed-function tasks such as rendering
simple shapes and textures. Early 2000s’ programmable shaders
permitted more flexible rendering techniques [Peddie 2023]. Uni-
fied shader architectures allowed greater GPU capabilities to per-
form general-purpose computations. In recent times, Al-accelerated
processing and compute shaders enabled GPUs to support diverse
applications other than graphics, including machine learning, simu-
lations, and scientific computing [Peddie 2023].

Reasons for Conducting the Survey

GPUs have emerged as a component of numerous applications,
from Al data sciences, to high performance computing. Their in-
tegration into networked systems, distributed as well as edge com-
puting, is becoming the norm. In this paper, we do just that: discuss
how GPUs are accelerating computation across all domains, and pro-
vide a structured overview of their architecture, their programming
models, and future applications.

2 GPU Architecture and Programming Models

Graphics Processing Units’ programming interfaces and architec-
tures form a significant foundation for describing their capability
and application in modern computing architectures. GPUs are no
longer composed of custom-designed hardware produced solely
for graphical rendering but are also composed of adaptive parallel
processors with multiple computational loads that they can address.
This development has been preceded and accompanied by deep
architectural innovations and the development of sophisticated pro-
gramming models that expose the parallel processing capabilities
of such devices. The intricate co-dependence of GPU hardware
architecture and software environments determines not only per-
formance characteristics but also the convenience and effectiveness
with which programmers can access GPU computing power. Under-
standings of these elementary components provide crucial context
for why GPUs have become the center of attention for accelerating
computation in areas ranging from artificial intelligence to scientific
simulations and beyond.

, Vol. , No. , Article . Publication date: .


https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

2« Arredondo, Hakimi, Nguyen, and Pugalenthi
2.1 Evolution of GPU Architecture

|

Era-6 D3D 12U
Era.5 D3D 12
Era-4 D3D 11
Era-3 D3D'l0
Era-2 ISEDé 9c

Era-1D3D 7

1999 2006 2010 2015 2020 2023

Fig. 1. The History of the GPU by Jon Peddie, via SpringerLink.
(https://link- springer-com.calpoly.idm.oclc.org/chapter/10.1007/978-90-
481-9971-6_14).

Six Phases of GPU Development:

e First-Generation GPUs (1999-2000): Fixed Function - GPUs
during this generation were largely designed for accelerating
fixed graphics workloads. Hardware implementation of TL
processing, as first introduced by Nvidia’s GeForce 256, was
the start of offloading of complex rendering from the CPU.
However, these GPUs were non-programmable and were
limited to specific rendering tasks [Peddie 2023].

Fig. 2. Nvidia’s GeForce 256, via Nvidia. (https://blogs.nvidia.com/wp-
content/uploads/2024/10/geforce-256-nvidia-blog-image-1280x660- 2-

2.jpp)-

e Second-Generation GPUs (2000-2006): Programmable Shaders
— The arrival of DirectX 8 and OpenGL paved the path for
the transition of GPUs from fixed-function pipelines to pro-
grammable shaders, where programmers could program pro-
prietary lighting and texturing effects. The achievement helped
in achieving more realistic rendering of graphics and opened
the doors for general-purpose computing on GPUs (GPGPU),
making the foundation for future achievements [Peddie 2023].

e Third-Generation GPUs (2006-2009): Unified Shaders — Uni-
fied shader architectures enabled GPUs to dynamically allo-
cate resources across diverse shading tasks (vertex, pixel, and
geometry) dynamically. This shift improved parallelism and
efficiency significantly, significantly improving both gaming
graphics and computational workloads aside from rendering,
and making GPUs more general-purpose friendly [Peddie
2023].

, Vol. , No., Article . Publication date: .

e Fourth-Generation GPUs (2009-2015): Compute Shaders and
GPGPU - The introduction of compute shaders marked the of-
ficial entry of GPUs into high-performance computing. CUDA
(2007) and OpenCL (2008) introduced the possibility of using
GPUs as heavyweight tools for parallel processing, acceler-
ating workloads for scientific simulation, cryptography, and
financial modeling. In this period, GPUs evolved from be-
ing graphic-only hardware to being central components of
large-scale computational infrastructure [Peddie 2023].

Ray Tracing and Al Boost — The introduction of real-time
ray tracing for games (using NVIDIA RTX technology) revo-
lutionized rendering by simulating the behavior of light to
unprecedented levels of accuracy. Meanwhile, Al accelera-
tion also saw growth, with GPUs including specialized Tensor
Cores to enable deep learning and training neural networks.
This generation solidified GPUs as a pillar of Al research and
machine learning applications [Peddie 2023].

HMIHECRAFY

Fig. 3. RTX Ray Tracing being used for Minecraft Shaders, via Nvidia.
(https://images.nvidia.com/aem-dam/Solutions/geforce/campaigns/
minecraft-with-rtx/phase2/Portal_Pioneers NEW_Crystal_room_4_ON_
with_Logo.png).

o Sixth-Generation GPUs (2020-Present): Al-Boosted Compute
and Mesh Shaders - Modern GPUs contain built-in Al acceler-
ators, such as NVIDIA Tensor Cores and AMD Matrix Cores,
which optimize deep learning computations. In addition, with
the inclusion of Mesh Shaders, geometry processing is more
optimized, and complex rendering operations are easier to
implement. This period has also seen the integration of multi-
GPU computing, where GPUs work together to solve exascale
computing issues in cloud Al, supercomputing, and real-time
simulation [Peddie 2023].

Components of Modern GPUs

Tensor Processors — Al workload acceleration

Tensor processors are hardware accelerators specifically designed
to enhance Al and machine learning workloads, particularly deep
learning workloads. The processors employ matrix operations that
are the foundation of neural network computation. Thanks to the
GPU'’s single instruction, multiple data (SIMD) architecture, ten-
sor processors are capable of optimizing computation performance


https://link-springer-com.calpoly.idm.oclc.org/chapter/10.1007/978-90-481-9971-6_14
https://link-springer-com.calpoly.idm.oclc.org/chapter/10.1007/978-90-481-9971-6_14
https://blogs.nvidia.com/wp-content/uploads/2024/10/gefo rce-256-nvidia-blog-image-1280x660-2-2.jpp
https://blogs.nvidia.com/wp-content/uploads/2024/10/gefo rce-256-nvidia-blog-image-1280x660-2-2.jpp
https://blogs.nvidia.com/wp-content/uploads/2024/10/gefo rce-256-nvidia-blog-image-1280x660-2-2.jpp
https://images.nvidia.com/aem-dam/Solutions/geforce/campaigns/m inecraft-with-rtx/phase2/Portal_Pioneers_NEW_Crystal_room_4_ON_with_Logo.png
https://images.nvidia.com/aem-dam/Solutions/geforce/campaigns/m inecraft-with-rtx/phase2/Portal_Pioneers_NEW_Crystal_room_4_ON_with_Logo.png
https://images.nvidia.com/aem-dam/Solutions/geforce/campaigns/m inecraft-with-rtx/phase2/Portal_Pioneers_NEW_Crystal_room_4_ON_with_Logo.png

Accelerating Computational Workloads: GPU Architectures, Programming Models, and Applications « 3

Shader Thread Mapping = Topology
No access to .
B 1 Vertex No influence
connectivity
[
Variable output 1 Primitive / ) )
doesn‘t fit HW well 1 Output Strip raciesiops
Fixed-function HEEE
1 Patch /
topology e Tateverter Fast Patterns

Fig. 4. Mesh shaders represent the next step in handling geometric com-
plexity, via Nvidia. (https://developer.nvidia.com/blog/introduction-turing-
mesh-shaders/).

Fig.5. NVIDIA Asteroids demo uses mesh shading. (https://developer.nvidia.
com/blog/introduction-turing-mesh-shaders/).

greatly by performing extensive parallel computations on big data
sets and are essential for applications such as image recognition,
recommendation systems, and scientific simulation. Tensor proces-
sors have evolved to encompass dedicated deep learning cores, such
as NVIDIA’s Tensor Cores, which accelerate mixed-precision matrix
multiplications required for training and inference in AI models
[Peddie 2023].

Memory Managers — Efficient data transfer between GPU cores and
memory

Efficient memory management takes center stage in maximizing
the performance of GPUs, as modern GPUs execute on the basis of
high-bandwidth memory architectures that are designed for parallel
computation. Memory managers guarantee efficient data transport
between memory and GPU cores, reducing latency and avoiding
bottlenecks that could occur because of inefficient data access pat-
terns. These managers can utilize dedicated architectures such as
unified memory, high-speed caches, and memory compression algo-
rithms to optimize the use of GPU resources. Additionally, memory
management innovation such as integrating Al-driven prediction
mechanisms boosts performance by prefetching data that will be
employed for upcoming computations [Peddie 2023].

Streaming Multiprocessors (SMs) / Compute Units (CUs) — Primitive
computing units for parallel execution

NVIDIA GPU Streaming Multiprocessors (SMs) and AMD GPU
Compute Units (CUs) are the fundamental units of parallel execution.
They consist of multiple arithmetic logic units (ALUs) or floating-
point units (FPUs), which execute instructions on numerous threads
simultaneously. Modern SMs and CUs hold a variety of shaders,
including vertex, geometry, and compute shaders, to enable seam-
less workload partitioning. The multiprocessor-cluster architecture
allows enormous scalability, which allows GPUs to accelerate non-
graphic workloads such as Al training, physics simulations, and
scientific computations [Peddie 2023].

Ray Tracing Cores — Dedicated real-time ray tracing hardware

Ray tracing cores are dedicated hardware blocks optimized to
accelerate real-time ray tracing, a rendering technique that simu-
lates how light acts when it encounters surfaces in order to produce
highly realistic images. These cores perform elaborate calculations
with regard to ray intersection, reflections, and refraction, lowering
significantly the computation load for the general-purpose GPU
cores. Assisted by Al technologies such as NVIDIA’s Deep Learning
Super Sampling (DLSS), ray tracing cores achieve improved perfor-
mance at high image quality. The advent of ray tracing hardware
in particular has revolutionized game design, movie visual effects,
and real-time simulation, and with an unparalleled sense of realism
[Peddie 2023].

2.2 Comparative GPU Architectures

The article A Comparative Study of GPU Programming Models
and Architectures Using Neural Networks presents a comprehen-
sive comparison between the Nvidia Fermi and AMD/Ati Radeon
architectures and the CUDA and OpenCL programming models
[Pallipuram et al. 2011]. This is relevant because it demonstrates
how design decisions in architecture affect computation workloads,
specifically on high-workload applications such as Al and neural
networks. Understanding their strengths and weaknesses, we can
better comprehend recent computing and optimisation strategies on
GPUs. The contrast between AMD/ATi Radeon and NVIDIA Fermi
architectures says a lot about the influence of varied design philoso-
phies on computational efficiency. Understanding the differences is
understanding how and why we ended up with the sophisticated
Al and HPC workloads we enjoy today. Looking back at these for-
mative architectures, we are best suited to put into perspective the
innovations that afforded us productive AI and HPC workloads of
today.

Architectural Differences and Performance Implications

NVIDIA Fermi is deterministic in performance because of its
scalar processing paradigm [Pallipuram et al. 2011]. AMD Radeon’s
VLIW architecture provides greater theoretical performance but at
the cost of engaging time-consuming instruction scheduling [Pal-
lipuram et al. 2011]. Memory performance: Fermi cache hierarchy
is optimized and minimizes latency, whereas Radeon suffers from

, Vol. , No. , Article . Publication date: .


https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/

4« Arredondo, Hakimi, Nguyen, and Pugalenthi

write unit stalls [Pallipuram et al. 2011]. Neural Network Perfor-
mance: Fermi provides a 1095x speed-up for Hodgkin-Huxley mod-
els, which is better than Radeon’s 588x speed-up [Pallipuram et al.
2011].

AMDY/ATi Radeon and NVIDIA Fermi Architectures:

Feature NVIDIA Fermi (Tesla C2050) AMD Radeon (5870)

Core Organization 448 CUDA cores in 14 SMs 1600 ALUs in 320 stream cores

Memory Architecture L1/L2 cache, 64KB shared memory per 8 KB L1 per compute unit, 512

SM KB L2
Processing Model Scalar processor architecture VLIW (5-way ALU)
Compute Throughput 1.105 TFlops/s 2.72 TFlops/s
Memory Bandwidth 144 GB/s 155 GB/s

Error Correction Not available

(ECC)

Supported

2.3 GPU Programming Models

The contrast between OpenCL and CUDA offers instructive lessons
regarding how rival programming models take advantage of the ca-
pabilities of GPUs for various workloads. Being an NVIDIA product,
CUDA is NVIDIA GPU-specific and gives high-granularity con-
trol of memory and execution parameters. Being an open standard
backed by various vendors, OpenCL thus has broader compatibility
but might need finer tuning to achieve peak performance. These
programming models must be familiar with choosing the most ap-
propriate framework for certain high-performance computing tasks.

CUDA vs. OpenCL: A Comparative Overview

NVIDIA CUDA specifies GPU execution in C-based kernels and
groups the threads into thread blocks to be run on Streaming Mul-
tiprocessors (SMPs) [Pallipuram et al. 2011]. CUDA provides fine-
grained memory control through registers, thread block shared
memory, and global memory for each thread [Pallipuram et al. 2011].
OpenCL is an open heterogeneous computing platform for GPUs,
CPUs, and FPGAs [Pallipuram et al. 2011]. It takes advantage of
work-items and work-groups instead of CUDA’s threads and blocks,
and it is cross-platform but generally less performance-optimized
[Pallipuram et al. 2011].

Optimization Methods for CUDA and OpenCL:

Memory Optimization: CUDA leverages shared memory and
memory coalescing, while OpenCL leverages explicit memory man-
agement and prefetching to improve memory access [Pallipuram
et al. 2011]. Execution Optimization: The CUDA execution model is
optimized for NVIDIA GPUs to schedule threads more efficiently,
whereas OpenCL is manually optimized to achieve optimal perfor-
mance on various architectures [Pallipuram et al. 2011]. Instruc-
tion Optimization: Both models use loop unrolling and minimizing
branch divergence techniques for computational optimization [Pal-
lipuram et al. 2011].

, Vol. , No., Article . Publication date: .

Performance Comparison: CUDA vs. OpenCL: CUDA is also faster
than OpenCL on NVIDIA hardware due to hardware-specific opti-
mizations being better in CUDA. OpenCL is more portable and needs
more optimization to run best on various architectures [Pallipuram
et al. 2011]. CUDA achieves 976.2x speed-up in Hodgkin-Huxley
models whereas OpenCL achieves 878.4x speed-up, showing CUDA
performance on NVIDIA hardware. On Fermi GPUs with optimized
memory management. For Hodgkin-Huxley models, CUDA achieves
976.2x speed-up and OpenCL achieves 878.4x speed-up [Pallipuram
et al. 2011].

3 GPUs in Artificial Intelligence and Machine Learning

As advancements in artificial intelligence and machine learning ac-
celerate, traditional graphics processing units (GPUs) may struggle
to keep pace with increasing computational demands. Now, GPUs
are being complemented by specialized accelerators like intelligence
processing units (IPUs) and reconfigurable dataflow units (RDUs).
While GPUs remain the most widely used for Al workloads, IPUs
offer better efficiency for tasks involving fine-grained parallelism,
while RDUs are optimized for dataflow processing. Understand-
ing the trade-offs between each accelerator helps choose the right
hardware for Al applications.

3.1 Transformative Role of GPUs in Al

Parallel Computing Capabilities for Matrix Operations

The emergence of Graphics Processing Units (GPUs) has played
a key role in the evolution of artificial intelligence (AI), particularly
in machine learning (ML) and deep learning (DL), where matrix op-
erations play a central role. Unlike Central Processing Units (CPUs),
which process sequentially, GPUs capitalize on parallelism to ex-
ecute thousands of calculations simultaneously. This makes them
very efficient in handling complex mathematical operations such as
matrix multiplication and vector transformation which are funda-
mental neural network training, where high volumes and billions
of parameters require parallel processing [Youvan 2023].

One major milestone in the development of GPU-accelerated AI
was the launch of NVIDIA’s Compute Unified Device Architecture
(CUDA), which gave scientists direct access to the cores of GPUs to
carry out general computing. CUDA made it possible to tap into the
parallelism in GPUs to their full extent, significantly reducing the
time required to train large Al systems. In addition with the help of
deep learning frameworks like TensorFlow and PyTorch, scientists
have been able to design more complex Al systems, expanding the
boundaries of computational feasibility.

Performance Improvements Over Traditional CPU Processing

GPUs outperform traditional CPUs in Al tasks because they exe-
cute a high volume of parallel operations efficiently. CPUs contain
a small number of high-power cores that are serially optimized,
whereas modern GPUs consist of thousands of smaller cores to
run large workloads in parallel. This architectural difference allows
GPUs to achieve dramatic speedups in deep learning model train-
ing—usually 50 times quicker than CPU-based calculations [Youvan
2023].



Accelerating Computational Workloads: GPU Architectures, Programming Models, and Applications « 5

The second key advantage of GPUs in Al is their increased mem-
ory bandwidth. AI applications tend to load and process massive
data sets, and GPUs, with their high-bandwidth memory (HBM) and
optimized access to memory, provide faster data transfer and com-
putation. This reduces bottlenecks typically faced by CPU-based
processing and allows Al models to scale efficiently to more complex
architectures [Youvan 2023].

Furthermore, GPUs enable large-scale Al applications, from com-
puter vision to natural language processing (NLP), by providing
scalable computational resources that are not possible with tradi-
tional CPU-based systems. As deep learning models become in-
creasingly complex, innovations in GPUs, such as tensor cores and
mixed-precision computing, are optimizing Al training [Youvan
2023].

3.2 GPU Frameworks for AI/ML

NVIDIA’s CUDA Ecosystem

One of the major drivers behind the usage of GPUs in Al and ML
is the CUDA ecosystem by NVIDIA. CUDA is a parallel architec-
ture and programming model that allows developers to access the
processing powers of GPUs to make them efficiently work on Al
workloads. CUDA includes low-level optimizations to allow deep
learning models to perform high-rate matrix operations and take
advantage of data parallelism. CUDA helped Al scientists to over-
come the conventional CPU bottlenecks, making GPUs the hardware
choice to train and infer Al [Peng et al. 2024].

One of the most important aspects of CUDA’s contribution to
deep learning is cuDNN (CUDA Deep Neural Network Library),
which provides implementations of critical neural network oper-
ations such as convolutions, pooling, and activations, accelerated
by the GPU. By accelerating these operations on NVIDIA GPUs,
cuDNN significantly improves deep learning performance, enabling
more rapid training and more accurate inference [Peng et al. 2024].

Integration with TensorFlow and PyTorch

The leading deep learning frameworks, TensorFlow and PyTorch,
are completely optimized to be accelerated by CUDA and cuDNN.
These frameworks have revolutionized Al development by simpli-
fying the process of incorporating GPUs and allowing developers
to focus on the architecture of the model rather than working with
low-level hardware details [Peng et al. 2024].

TensorFlow has native GPU support through CUDA so that Al
models can be trained in parallel across many GPUs. This signifi-
cantly accelerates training operations so that deep learning experi-
ments can be tested at a large scale.

PyTorch, known for its dynamic computation graph, integrates
seamlessly with CUDA, allowing Al models to leverage automatic
GPU utilization. PyTorch’s dynamic computation feature makes it
extremely well-suited for research and prototyping, where flexibility
is vital [Peng et al. 2024]. These integrations have driven major
advancements in Al research, making it possible to train and deploy
large-scale Al models with unprecedented speed and accuracy.

3.3 GEmerging Al/ML Accelerators
Comparison of GPUs with IPUs and RDUs

The recent expansion in artificial intelligence (AI) and machine
learning (ML) has given rise to a requirement for purpose-specific
accelerators apart from conventional GPUs. Two instances are the
Graphcore Intelligence Processing Unit (IPU) and the Sambanova
Reconfigurable Dataflow Unit (RDU), both designed to overcome the
restrictions imposed by conventional von Neumann architectures
[Peng et al. 2024].

| ] | ]

um am

IPU-Tileg =-=c--ccocccece--- 4} n n
] | | ]

1] -m

] ] n

IPU-Core - i oo
am am

(] ] ]

11 ==

-] HH

In-Processor-Memory

IPU-Exchange e RRmattl Rt S
oo ] ] 1] (1]
[ 1] [ | ] :: ::
L] an am am
IPU-Links B oo il 1 H
1] - [ 1 ] | 1
= = == ==
1] [ | ] | 1 | 1
L] L] L L L
1] [ | ] | 1 ] { 1
L] L] am am
T T == ==
- . = =
[ 1 ] [ | ] {1 ] {1 ]
== == ] ==

(a)

Fig. 6. Graphcore IPU architecture. arXiv, via Cornell University. (https:
//arxiv.org/abs/2311.04417?utm_source=chatgpt.com).

Weight N Weight \

Input — Conv — % t Conv -+ Norm ~{'Sum|

Conv PCU Conv PCU
DRAM 7 : DRAM
Interface < ;@ B ; ;I; Interface
Pool PMU
o o -
PCU PCU PCU PCU, Norm
DRAM s ] 9 DRAM
Interface Interface
PMU PMU PMU PMUJ| § Sum §@
(b) s [ —

Fig. 7. Sambanova RDU architecture. arXiv, via Cornell University. (https:
//arxiv.org/abs/2311.04417?utm_source=chatgpt.com).

GPUs have been dominant in accelerating AI due to their Single
Instruction Multiple Thread (SIMT) architecture, where thousands
of threads can be executed in parallel. They still suffer from bottle-
necks in non-uniform data access workloads, such as Graph Neural
Networks (GNNs) [Peng et al. 2024].

On the other hand, the Graphcore IPU employs a Multiple Instruc-
tion Multiple Data (MIMD) strategy, with 1,472 independent tiles
on each chip, each of which can execute distinct instructions. This
enables the IPU to achieve fine-grained parallelism and be more
effective for sparse calculations [Peng et al. 2024].

The Sambanova RDU, on the other hand, is based on a Coarse-
Grained Reconfigurable Array (CGRA) architecture, and it focuses
on dataflow execution. This means that instead of being instruction-
based computations, RDUs are based on data movement, and they

, Vol. , No. , Article . Publication date: .


https://arxiv.org/abs/2311.04417?utm_source=chatgpt.com
https://arxiv.org/abs/2311.04417?utm_source=chatgpt.com
https://arxiv.org/abs/2311.04417?utm_source=chatgpt.com
https://arxiv.org/abs/2311.04417?utm_source=chatgpt.com

6 + Arredondo, Hakimi, Nguyen, and Pugalenthi

are therefore highly effective with transformer-based models such
as BERT and GPT [Peng et al. 2024].

Understanding TFLOPs and AI Accelerator Performance

A key performance metric when comparing Al accelerators is
TFLOPs (Tera Floating-Point Operations Per Second). One TFLOP
is one trillion (10*) floating-point operations per second, and it is a
standard unit to measure computational performance in Al and deep
learning applications. The higher the TFLOPs, the more calculations
an accelerator can perform per second, and the more it will influence
the training and inference speeds of AI models [Peng et al. 2024].

Although, TFLOPs is an important metric of raw computing abil-
ity, Al performance is also determined by other factors, including
architecture design, memory bandwidth, and software optimiza-
tions.

Specialized vs. General-Purpose Architectures
Key distinctions between GPUs, IPUs, and RDUs is their architec-
tural focus:

e GPUs: General-purpose accelerators that are optimized for
matrix-intensive calculations, taking advantage of their high
memory bandwidth (1.6 TB/s in NVIDIA A100) and Tensor
Cores for deep learning.

o IPUs: Prefer task-level parallelism, with the capability to run
multiple independent streams of instructions. The Graphcore
GC200 IPU achieves 62.5 TFLOPS (FP32) and 250 TFLOPS
(FP16) and is particularly optimized for sparse workloads
[Peng et al. 2024].

e RDUs: Designed to run dataflow in a way that is customized to
reduce instruction latency and improve inference throughput.
The Sambanova SN10 RDU delivers 325 TFLOPs (FP16) but is
only specialized for AI workloads, unlike GPUs [Peng et al.
2024].

These distinctions highlight that while GPUs remain the most
general-purpose, IPUs and RDUs are more scalable and efficient in
specific Al workloads, such as graph processing and NLP inference
[Peng et al. 2024].

Performance Characteristics for Different AI Workloads
General Matrix Multiplication (GEMM) Performance

e NVIDIA A100 GPU provides 312 TFLOPs (FP16) and 19.5
TFLOPs (FP32), making it the fastest for dense matrix opera-
tions.

e Graphcore GC200 IPU delivers 250 TFLOPs (FP16) and 62.5
TFLOPs (FP32), offering comparable performance but specifi-
cally optimized for sparse matrix operations.

e Sambanova SN10 RDU reaches 325 TFLOPs (FP16) but lacks
higher precision (FP32) support, which limits its versatility
[Peng et al. 2024].

Transformer-Based Model Performance (BERT, GPT)

e Sambanova RDU significantly outperforms IPUs and GPUs
in transformer-based models due to its dataflow execution
model.

, Vol. , No., Article . Publication date: .

(a) Grapheore (b) Sambanova @m0 @vioo (e) A100

Fig. 8. Cross-platform evaluation on square GEMM operators. arXiv, via
Cornell University. (https://arxiv.org/abs/2311.04417?utm_source=chatgpt.
com).

e GPUs, such as the NVIDIA A100, remain the best option
for training large models, but RDUs provide a 4x inference
speedup for BERT [Peng et al. 2024].

o Graphcore IPUs, while efficient for certain NLP tasks, do not
match RDUs’ performance in sequential transformer-based
workloads [Peng et al. 2024].

Graph Neural Networks (GNNs) Performance

e Graphcore IPU is the top performer for GNN tasks, achieving
2x—4x higher throughput than GPUs, thanks to independent
tile execution that reduces memory bottlenecks [Peng et al.
2024].

e GPUs (NVIDIA A100 and V100) struggle with sparse and
irregular workloads, performing 30-40% worse than IPUs in
GNN training [Peng et al. 2024].

e RDUs are not well-suited for GNNSs, as their dataflow archi-
tecture is optimized for sequential models like transformers
[Peng et al. 2024].

2D Convolutional Neural Network (CNN) Performance

o Graphcore GC200 IPU delivers 8.18x higher FP16 convolution
throughput than NVIDIA V100, making it the most efficient
CNN accelerator [Peng et al. 2024].

o NVIDIA A100 remains the leading choice for large-scale CNN
model training due to its high memory bandwidth and Tensor
Cores.

e Sambanova RDU underperforms in convolution-based tasks
as it is not optimized for CNN workloads [Peng et al. 2024].

Sparse Matrix Multiplication (SPMM) Performance (Used in Al and
Scientific Computing)
e Graphcore IPU excels in sparse matrix workloads, achiev-
ing 1.5x speedup over GPUs.
o NVIDIA A100 GPU, with PyTorch CSR format, reaches 12.24x
higher throughput than V100, making it the best choice for
dense SPMM tasks [Peng et al. 2024].
e Sambanova SN10 RDU lacks compiler support for SPMM,
making it unsuitable for such workloads [Peng et al. 2024].

4 Large-Scale GPU Computing Systems

The MIT Supercloud is a high-performance computing (HPC) system
that is meant to optimize Al and machine learning-related workloads
by utilizing 448 NVIDIA Volta V100 GPUs across 224 nodes. The
system is meant to be used by Al scientists, government research
centers, and scientific fields that require high parallel processing.


https://arxiv.org/abs/2311.04417?utm_source=chatgpt.com
https://arxiv.org/abs/2311.04417?utm_source=chatgpt.com

Accelerating Computational Workloads: GPU Architectures, Programming Models, and Applications « 7

Unlike conventional HPC clusters, the Supercloud is optimized to
support interactive Al development, enabling users to prototype,
train, and deploy deep learning models with efficiency.

4.1 High-Performance Computing with GPUs

Supercloud’s use of GPUs reveals significant inefficiencies and pos-
sible optimization targets:

GPU Usage Trends:

e GPU’s have an average job time of 30 minutes, though dura-
tions can vary between less than one minute and more than
20 hours.

e 70% of jobs on the GPU have a queue time of less than one
minute, demonstrating the efficiency with which Supercloud
schedules AI workloads.

e The majority of jobs have low resource utilization, with a
median streaming multiprocessor (SM) utilization of only
16% and memory bandwidth utilization of just 2% [Li et al.
2022].

Idle vs. Active Phases:

o Supercloud workloads follow unpredictable usage patterns,
shifting between active and idle periods at random. On av-
erage, a typical job runs actively 84% of the time, but some
jobs use GPUs for as little as 14% of their runtime. While
most jobs maintain low average utilization, 22% spike to 100%
SM utilization at some point—making peak demand a critical
factor in scheduling [Li et al. 2022].

Energy Efficiency and Power Limitations:

e The average power consumption per job is 45W, with the
highest recorded usage at only 87W—well below the V100
GPU’s 300W TDP [Li et al. 2022].

e More than 60% of jobs would not be affected by a 150W
power cap, suggesting that power limiting could increase
job throughput without negatively impacting performance
[Li et al. 2022].

These findings highlight potential optimization targets for dy-
namic GPU scheduling, resource-aware job placement, and power-
efficient capping to significantly improve GPU utilization in HPC
environments.

4.2 Challenges in GPU Resource Management

Inefficiencies in Current GPU Utilization

One of the most significant issues in modern GPU-based HPC
systems is the inefficient utilization of GPU resources. The MIT Su-
percloud report reveals that approximately 60% of total GPU hours
are consumed by immature workloads—i.e., exploratory, develop-
mental, and IDE jobs-rather than production-quality applications
[Li et al. 2022]. This is a tremendous resource commitment in early
phases of the Al workflow that underutilized the expensive GPU
hardware.

The detailed analysis of GPU utilization metrics shows that most
work streams at surprisingly suboptimal rates of efficiency. The
median streaming multiprocessor (SM) utilization was found to be
a mere 16%, memory bandwidth use at a laughable 2%, and memory

size utilization at a nominal 9% [Li et al. 2022]. Moreover, work
uses in excess of 50% of the available SM resources for merely 20%,
suggesting meaningful wasted compute capability in production
deployments.

Most revealing perhaps is the categorization of tasks by the stage
of development. While mature tasks constitute roughly 60% of all
tasks on the system, they consume a mere 39% of all GPU hours.
Conversely, development tasks targeted for hyperparameter tuning
constitute 18% of tasks but consume 34% of GPU hours [Li et al.
2022]. Such significant investment of resources in development
stages is a paradigm shift in HPC resource usage patterns compared
to conventional scientific computing workloads.

The research also discovers significant temporal variation in re-
source utilization. GPU tasks exhibit irregular activity patterns,
alternating between active and idle states, with the median task
utilizing GPU resources for only 84% of its duration [Li et al. 2022].
Such temporal inconsistency offers yet another inefficiency in re-
source scheduling and allocation.

Node Specifications
Number of Nodes 224 Node 384 GB
RAM
Number of CPU | 8960 cores (two CPUs per Processor Intel  Xeon
Cores node, each with 20 cores; Gold 6248
2-way hyperthreading per-
core)
Interconnect 100 Gb/s Omnipath two- Network 25 Gb/s Eth-
layer partial fat-tree ernet CX-4
GPU Specifications
Number of GPUs 448 Type Nvidia Volta
V100
GPUs per Node 2 RAM 32 GB
Storage Specifications
Local [ TTB SSD & 3.8 TB HDD |[[ Shared | 873 TB SSD

Fig.9. Specifications of the Supercloud system. MIT Supercloud, via IEEE Ex-
plore. (https://ieeexplore-ieee-org.calpoly.idm.oclc.org/document/9773216).

Job Scheduling Challenges

GPU job scheduling poses several unique challenges in modern
Al-focused HPC environments. Older HPC job scheduling meth-
ods, which were written for long-running, CPU-intensive scientific
calculations, are not adapted to the requirements of deep learning
workloads.

First, the high degree of variation in job properties, both between
users and across a user’s submissions, complicates scheduling. An
MIT Supercloud study found that an average user submits jobs with
highly diverse runtime and resource usage properties, with the job
runtime coefficient of variation often exceeding 155% [Li et al. 2022].
The variability complicates forecasting resource usage and making
scheduling choices.

Second, multi-GPU tasks introduce additional complexity into the
scheduling. While 16% of Supercloud tasks utilized more than one
GPU, these tasks alone contributed about 50% of total GPU hours [Li
et al. 2022]. The complexity is further increased by the finding that
about 40% of multi-GPU tasks utilize at least one or more idle GPUs,
i.e., inefficient resource utilization within even explicitly demanding
multi-GPU tasks.

, Vol. , No. , Article . Publication date: .


https://ieeexplore-ieee-org.calpoly.idm.oclc.org/document/9773216

8 « Arredondo, Hakimi, Nguyen, and Pugalenthi

Finally, the increasing dominance of exploratory and develop-
ment workloads requires scheduling systems to be able to manage
different job priorities and quality-of-service requirements. The
Supercloud study shows that different types of jobs (mature, ex-
ploratory, development, and IDE) have extremely different patterns
of resource utilization and runtime behavior [Li et al. 2022]. Current
scheduling techniques lack the complexity to differentiate between
these types and allocate resources accordingly.

4.3 Future Directions for GPU HPC

Dynamic Resource-Sharing Techniques

GPU usage patterns in HPC environments indicate the great
potential of dynamic resource-sharing techniques. The Supercloud
study highlights that most GPU-accelerated workloads exhibit low
utilization of various resources (SM, memory, PCle bandwidth), with
the utilization of resources varying extensively during job execution,
oscillating between idle and active periods [Li et al. 2022]. Such a
pattern offers an opportunity for sophisticated resource-sharing
techniques.

100 =100

g - -
€ w0 P 80 o Y
" _——
S 60 - 604"
s Vid
ZE 40 ’ 40
S 5 - = CPUJobs | 20 = CPU Jobs
E = = GPU Jobs - = GPU Jobs

0 o
10° 10 102 10° 10° O 25 50 75 100
Run Time (Minute) Q. Wait Time (% of Serv. Time)
(a) (b)

Fig. 10. MIT Supercloud, via IEEE Explore. (https://ieeexplore-ieee-org.
calpoly.idm.oclc.org/document/9773216).

Future HPC GPU systems will likely use more advanced space-
sharing mechanisms that allow multiple jobs to simultaneously
share non-contentious GPU resources. The reality that different jobs
use each type of resource in different ways suggests that workloads
with complementary attributes can be co-located at low perfor-
mance cost [Li et al. 2022]. For instance, compute-bound jobs can be
co-located with memory-bound jobs and can share GPU resources
to attain higher overall hardware usage.

Time-sharing techniques also have potential, particularly in light
of the observation that GPUs are idle for significant portions of job
runtimes, with such idleness occurring at unpredictable times [Li
et al. 2022]. Preemptive scheduling might be employed in future
systems to reclaim these idle resources, which would have signifi-
cant efficiency benefits. However, as the authors note, co-location
interference remains difficult to predict and solve, indicating more
work must be done on online architectural tools for predicting idle
times and resource contention patterns.

Multi-Tier GPU Setups

The Supercloud experiment makes a compelling case for multi-
level GPU infrastructure that provides GPUs of varying capabilities
and costs to satisfy workload demand. As most GPU hours are
consumed by exploratory, development, and IDE jobs with obviously
lower resource utilization, there is certainly scope to reallocate these
workloads to lower-capacity or lower-cost GPUs [Li et al. 2022].

, Vol. , No., Article . Publication date: .

Future GPU HPC systems may employ tiered hardware archi-
tectures where high-end, high-performance GPUs are reserved for
production workloads that can fully leverage their capabilities, and
lower-end GPUs are employed for development and exploratory
workloads. This would significantly improve cost-effectiveness with-
out compromising performance for production workloads.

40 g1 S

£ o @ 40

§202115 5% a

2 R § o, o] 5

0 o] = g5 0] 2 55
Qg g w Qg g w [
5§82 5§82 5§89
-] - 559
268 258 Zﬁg

(a) (b) (c)

0
T

Fig. 11. Supercloud System, via IEEE Explore. (https://ieeexplore-ieee-org.
calpoly.idm.oclc.org/document/9773216).

The work also identifies opportunities for power management
strategies in systems in the future. With the discovery that the me-
dian average GPU workload power draw is only 45W (compared
with the 300W peak V100 GPU usage utilized in this study), a great
opportunity lies with power-capping and over-provisioning strate-
gies [Li et al. 2022]. Power allocation dynamically can be utilized in
future systems for re-assignment of power between idle GPUs to
those handling priority or high-workload tasks.

Advanced Scheduling Strategies

Future GPU HPC systems for the next generation will also re-
quire smarter scheduling policies that are cognizant of the unique
character of Al and machine learning workloads. Research on the
Supercloud shows that users exhibit various job demands and ex-
pectations, meaning that schedulers should identify and serve these
varying requirements [Li et al. 2022].

One possible direction is the development of job classification
systems that can automatically categorize workloads based on their
development stage and the resources they require. The new job
classification of the Supercloud project into mature, exploratory,
development, and IDE jobs provides a foundation for such directions
[Li et al. 2022]. Future schedulers can then use different policies for
each class, optimizing resource allocation respectively.

Also, the finding that even work submitted by the same user has
extremely varied characteristics breaks the common HPC practice
of user-consistent workloads [Li et al. 2022]. This would suggest
that next-generation scheduling systems will need to move beyond
predictive resource management approaches based on user-specific
policies and embrace more dynamic, workload-oriented approaches.

Finally, the study foresees potential for development and explo-
ration workload-specific checkpoint/restart mechanisms. As these
types of jobs normally run to failure or timeout, low-overhead check-
pointing mechanisms that store state and enable resumption effi-
ciently are becoming ever more important [Li et al. 2022]. Next-
generation systems can incorporate architectural and system-level
support for these kinds of mechanisms, perhaps combined with
low-latency persistent storage options to minimize job interruption
overhead.


https://ieeexplore-ieee-org.calpoly.idm.oclc.org/document/9773216
https://ieeexplore-ieee-org.calpoly.idm.oclc.org/document/9773216
https://ieeexplore-ieee-org.calpoly.idm.oclc.org/document/9773216
https://ieeexplore-ieee-org.calpoly.idm.oclc.org/document/9773216

Accelerating Computational Workloads: GPU Architectures, Programming Models, and Applications « 9

5 Specialized Applications of GPU Parallel Computing

GPU parallel computing has also extended beyond general-purpose
applications to specialized applications with unique computational
requirements. This section discusses three distinct specialized appli-
cations that reflect the versatility and revolutionary effect of GPU
acceleration for challenging computational applications.

5.1 Physics and Multibody Simulations

Macroscopic simulation of multibody dynamics, particularly with
granular materials, is a primary computational challenge in the past
and was traditionally tackled by continuum approximations, not
discrete elements. Tasora et al. present a revolutionary approach
taking advantage of parallel computation on a GPU to offer the ca-
pability to simulate hundreds of millions of rigid bodies interacting
with frictional contact [Tasora et al. 1970].

The authors then go on to identify three significant roadblocks
that have limited sequential computation in scientific applications:
the memory block (imbalance between CPU processing power and
memory access rate), the instruction level parallelism block (limi-
tations of speculative execution), and the power dissipation block
(thermal limitations limiting clock frequency increases). These road-
blocks have forced the transition to parallel computing architectures,
particularly GPUs, capable of providing much higher computational
throughputs for appropriate problems.

Their approach is founded on the derivation of multibody dynam-
ics as a differential variational inequality (DVI) that can simulate
advanced interactions between rigid bodies, including bilateral con-
straints, frictional contact, and externally applied loads. The formu-
lation accommodates both smooth and non-smooth effects in the
form of impacts and jumps in velocity. The authors transform this
DVI to a time-stepping formulation with the CCP to be solved at
each step, which is now the compute bottleneck as well as collision
detection.

More innovative about their approach is reformulating the CCP
solver to exploit the parallel nature of GPU architecture. They under-
stand that their solution’s iterative algorithm has some components
that are easy to parallelize (contact and constraint equations) and
other components that are more difficult to parallelize to avoid
race conditions (velocity updates). With a parallel segmented scan
algorithm and data structures of low memory transfer and high
arithmetic intensity, they achieve high-performance execution on
NVIDIA’s CUDA platform.

Benchmark runs demonstrate the effectiveness of this method. For
pebble bed nuclear reactor simulation—a problem with significant
practical use in nuclear engineering—the GPU version is linearly
scalable with number of bodies but at a much diminished slope com-
pared to the CPU version. At 128,000 particles, it is approximately
a 10x speedup with growing difference in performance for greater
problem size [Tasora et al. 1970].

The largest test case, with 1.1 million bodies that collide in a three-
dimensional box containing spheres of different densities, shows the
empirical viability of this approach for intractable problems. The
simulation well simulates complex granular physics phenomena,
such as the "floating" behavior of lower-density objects—phenomena
impossible to simulate faithfully with continuum approaches.

Fig. 12. Pebble bed nuclear reactor simulation, via SpringerLink.
(https://link- springer-com.calpoly.idm.oclc.org/chapter/10.1007/978-90-
481-9971-6_14).

The applicability spans many other areas. In construction equip-
ment simulation, it enables improved prediction of machine-terrain
interaction. In military applications, it enables detailed analysis of
off-road mobility on granular terrain like sand. In space exploration,
it helps design rovers to move on extraterrestrial ground. Nuclear
engineering is assisted by precise modeling of fuel pebble flow dy-
namics in reactor designs. These share in common the need for
discrete rather than continuum techniques in order to include the
most important physics.

The authors also outline future research directions, including
domain decomposition approaches to overcome memory limita-
tions, algebraic multi-grid methods to improve convergence rates,
hardware infrastructure to support even larger simulations, and
experimental validation at both macro and micro scales. These de-
velopments promise to further expand the applicability of GPU-
accelerated multibody dynamics simulation to increasingly complex
systems [Tasora et al. 1970].

5.2 Blockchain and Database Operations

The integration of GPU acceleration with blockchain systems repre-
sents a significant advancement in addressing performance bottle-
necks that traditionally limit transaction throughput in distributed
ledger technologies. Iliakis et al. provide a comprehensive analysis
of how GPU-accelerated key-value stores can dramatically enhance
the performance of blockchain database operations [Iliakis et al.
2022].

At the heart of most blockchain implementations, particularly
those that host cryptocurrencies such as Bitcoin, Litecoin, and
Ethereum, are key-value databases like LevelDB that store trans-
action history, block indices, and other metadata. The databases

, Vol. , No. , Article . Publication date: .


https://link-springer-com.calpoly.idm.oclc.org/chapter/10.1007/978-90-481-9971-6_14
https://link-springer-com.calpoly.idm.oclc.org/chapter/10.1007/978-90-481-9971-6_14

10 « Arredondo, Hakimi, Nguyen, and Pugalenthi

Genesis block

Hash of block, Hash of block, i Hash of bloc

| | — | |
i Timestamp | | Nonce 3 «— [Timestamp | | Nonce [ Timestamp | | Nonce | i Timestamp | | Nonce | |
LT T TX| | DT [TX X, ™ [TX; LT Lo e - B

Hash of block;

Fig. 13. Example of a blockchain, via The Institution of Engineering and
Technology. (https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/
blc2.12011?utm_source=chatgpt.com).

become performance bottlenecks in full nodes that authenticate
transactions and maintain blockchain consistency. The authors ac-
knowledge that full nodes carry out operations that are primarily
database search queries, thereby being ideal for parallel processing
acceleration.

The MegaKV system proposed in the paper utilizes parallel com-
putation of the GPU to accelerate key-value store performance in-
memory. The system schedules key-value operations onto hundreds
of thousands of lightweight GPU threads that can run in parallel,
supporting concurrent execution. This fully utilizes the GPU’s high
memory bandwidth as well as its massive multi-threading feature
for memory access latency masking.

Experimental benchmarking demonstrates performance gains
of unprecedented order, as operations accelerated by a GPU are
returned at two- to three-orders-of-magnitude higher throughput
rate than non-accelerated CPU-based strategies. Under practical
blockchain loads characterized by varying key-value sizes and read-
write patterns of access, MegaKV can process 2-8 billion transactions
in the course of 60 seconds in comparison to 20-30 million LevelDB
transactions achieved under the same timescale. The tremendous
acceleration achieved in processing stands directly in counterpoint
to concerns of scalability inherent in blockchain schemes while
ensuring integrity of security and decentralization.

k1-v32-g50-s50 k32-v1024-g50-s50
MKV-Get %LDB-Get,
-#MKV-Set -#LDB-Set

k32-v100-g50-s50

Latency (ns)
S,

1074 e

o kl-v32-p95s5 " k32-v100-95-s5 "k32v1024-g95-s5
10° S — s T |
_10%4
n oo 56000
gz 10°
g
= 1074
10'9
10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s) Time (s) Time (s)

Fig. 14. Query response time in nanoseconds for MegaKV and
LevelDB, via The Institution of Engineering and Technology.
(https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/blc2.12011?
utm_source=chatgpt.com).

Apart from performance optimization, the method of GPU ac-
celeration also demonstrates higher energy efficiency. Although it

, Vol. , No., Article . Publication date: .

makes use of additional hardware, the energy required to run a cer-
tain number of database queries with the help of GPU acceleration is
much lower compared to conventional CPU-based implementations.
Such energy efficiency carries significant implications regarding
the sustainability of blockchain networks and can reduce operation
costs and environmental impact.

The combination of key-value stores empowered by GPUs and
blockchain technology represents a promising research direction
for raising the throughput, scalability, and energy efficiency of dis-
tributed ledger technologies. These developments would play a key
role in broadening the adoption and use in real-world applications
of blockchain systems in non-cryptocurrency industries [Iliakis et al.
2022].

5.3 Network Traffic Processing

GASPP Framework for Stateful Packet Processing

The GASPP (GPU-Accelerated Stateful Packet Processing) sys-
tem is designed to leverage current GPUs for the processing of
high-speed network traffic. Unlike typical CPU-centric techniques,
GASPP transfers packet processing completely to the GPU and uni-
fies operations such as flow monitoring, TCP stream reassembly,
stateful traffic classification, and packet encryption. This facilitates
more efficiency and scalability with fewer CPU bottlenecks. An-
other critical innovation in GASPP is its zero-copy capability, which
eliminates unnecessary copies of memory between the network
interface card (NIC) and the GPU, which significantly maximizes
data throughput [Vasiliadis et al. 2014].

s
o
o
a
L
]
5
8
-3

IP Module ) ( UDP Module ) ( TCP Module ) (Slream Module)

!

IP Module ) ( UDP Module ) ( TCP Module ) (Stream Module)

(
(_p™odule ) | (Cuopmodule )  ((TcPModule ) | (Stream Module )
(

I
I
I
I
I
I
I
TCP/UDP Stream 1,
Processing Processing I
|
I
I
I
I
|
I
|
|
I
I
I

Fig. 15. GPU Packet Processing Pipeline, via Semantic Scholar. (https://
www.semanticscholar.org).

Addressing Flow Irregularities Across SIMT Threads

Among the most significant problems of packet processing with
GPUs is control flow divergence in Single Instruction, Multiple
Threads (SIMT) architectures. Traditional GPU programming is not
effective when several flows in the network should take alternative
processing paths. GASPP mitigates this issue by scheduling pack-
ets dynamically based on their characteristics (e.g., protocol type,
packet size, and processing requirement), such that SIMT units exe-
cute similar work concurrently. This reduces thread divergence and
maximizes parallel execution efficiency [Vasiliadis et al. 2014]. Also,
parallelized TCP stream reassembly ensures efficient management
of out-of-order packets without too much buffering.


https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/blc2.12011?utm_source=chatgpt.com
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/blc2.12011?utm_source=chatgpt.com
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/blc2.12011?utm_source=chatgpt.com
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/blc2.12011?utm_source=chatgpt.com
https://www.semanticscholar.org
https://www.semanticscholar.org

Accelerating Computational Workloads: GPU Architectures, Programming Models, and Applications « 11

Multi-Gigabit Forwarding Rates for Complex Networking Operations

GASPP can provide multi-gigabit packet-forwarding rates, in-
cluding during the performance of computationally expensive op-
erations such as intrusion detection, encryption, and deep packet
inspection. Using packet transfer batching and GPU memory access
pattern optimization, GASPP provides good throughput rates of
processing, up to 47.8 Gbit/s for packets of full size. In addition, its
modular design enables multiple network applications to operate
concurrently, saturating the GPU and making network performance
and security monitoring activities convergent on one hardware
platform [Vasiliadis et al. 2014].

6 Comparative Analysis and Future Trends

Cross-Domain Performance Comparison

Comparative evaluation of GPU-accelerated software across many
fields of activity highlights their breakthrough impact on scientific
computing, artificial intelligence, and networking. Sequential CPU-
oriented computers strangle on intensive computation, while GPUs
employ parallelism to achieve radical accelerations. Pallipuram et al.
(2011) demonstrates that CUDA and OpenCL impact processing of
neural networks, while GASPP (Vasiliadis et al., 2014) presents in-
stances of stateful packet inspection on a GPU. Similarly, blockchain
(Iliakis et al., 2022) and high-performance computing (Li et al., 2022)
use cases reveal the general scalability of GPUs over a broad set
of workloads. The point here is that while GPUs provide amaz-
ingly fantastic performance, their efficiency is highly workload- and
optimization-sensitive. Common Optimization Techniques Across

80000 « Baseline, + Opt1, ¥ Opt1+2, # Opt142+3 40,000 i OpenCL versus CUDA
m Benchmark-B1 B2 B2a 30,000 (Speed in "B2a" with Opt1+2+3)
70,000 ’ 35x
Z 60,000 20,000 20 ooy
S 50,000 & 10,000
% ot # s 1.0x
£ 40,000 o B Photons | -
= L | B " & | PeMS GrX1080T GTX1080 GIXSBOTI TTANX  GT530 ST 105071
£ 30,000 H °+ (NVIDIA)  (NVIDIA)  (NVIDIA) ~ (NVIDIA) ~ (NVIDIA)  (NVIDIA)
& 20000 MOGCL M MCX (CUDA)
“—— GPUs CcPUs
“I | ||" R o s et
. # |e #
niEn SRRl SRR |SSRS eixs erxg
RXVega64 GIX1080TI R9Neno  RX480  GTXI080 GIX9BOTI TWANX  GTX590 GTX1050TI HDS20GPU 2xXeonE5- Ryzen1700K 17-7700K
{amD} (NVIDIA) {AmD) {AmD) (NVIDIA) {NVIDIA) (NVIDIA) {NVIDIA) (NVIDIA) (intel)  2658v3 (Intel)  (AMD) (intel)

Fig. 16. CUDA vs. OPENCL, via Nvidia. (https://forums.developer.
nvidia.com/t/significant-speed- gap-between-cuda-and-opencl-how-to-
debug/57530).

Applications

Optimization strategies vary but share common principles across
domains. Memory coalescing, kernel fusion, and workload balanc-
ing are critical strategies to obtain peak GPU performance. Stream-
based execution enables asynchronous task handling in CUDA and
OpenCL implementations. Zero-copy memory transfers and SIMT
(Single Instruction, Multiple Threads) optimizations are used by
GASPP in networking to handle irregular flow processing, whereas
AT workloads take advantage of mixed-precision arithmetic and
tensor cores for deep learning acceleration. These mechanisms col-
lectively boost throughput, reduce latency, and enhance scalability
in GPU-accelerated applications.

Emerging Trends in GPU Architecture and Programming Models

The evolution of GPU architectures continues to push computa-
tional boundaries. Emerging hardware accelerators like IPUs (In-
telligence Processing Units) and RDUs (Reconfigurable Data Units)
provide specialized processing beyond general-purpose GPUs. Peng
et al. (2024) discuss the accelerating trend of domain-specific accel-
erators and their integration with traditional GPU workloads. In ad-
dition, advancements in unified memory models and cross-platform
frameworks like SYCL are bridging the gap between vendor-specific
implementations, providing greater accessibility and portability in
GPU computing.

Energy Efficiency Considerations

Energy efficiency remains a critical concern, particularly for large
GPU deployments. Youvan (2023) observes that while GPUs deliver
high performance, their power consumption necessitates workload
scheduling and adaptive power management. Dynamic voltage scal-
ing, memory compression, and multi-GPU workload balancing have
been proposed to mitigate power inefficiencies. As Al and real-time
processing demands grow, energy-to-performance ratio optimiza-
tion will be key to enabling sustainable GPU deployment in data
centers and edge computing. Future Research Directions and Chal-

Radeon X1900 XTX 29

Radeon X1900 XT 28 45— 1o
Radeon X1800 XT 30 S 103
GeForce 7800 GTX 512 29 53 o5
GeForce 7900 GTX 31 S2 a4
GeForce 7800 GTX 29 s2 I ¢
Radeon X1900 GT 25 S 5
GeForce 6800 Ultra 29 I 72
Radeon X850 XT 27 S e
Radeon X1800 XL 27 W2 57
GeForce 7800 GT 20 S0 57
GeForce 6800 GT 22 55
Geforce 6800 G5 20 4TI 55
Radeon X800 XL 18 S5 1o
Radeon X800 GTO 19 ST 49
GeForce 7900 GT 23 2N as
Radeon X1800 GTO 25 S s
GeForce 6600 GT 19 390 48
Radeon X1600 XT 2 380 42
Radeon X1600 Pro 24 30 I 41
Radeon X800 6T 21 ST 40
GeForce 6800 15 K3
GeForce 7600 GT 15 1723 I 36
Radeon X700 Pro 16 300 33
Radeon X1300 Pro 18 Ze i 31
GeForce 6600 12 200 25
GeForce 7600 GS 14 20 27 ldle MPeak 2D WPeak 30
GeForce 7300 GS o 16

Fig. 17. Graphic Cards by Power Consumption, via MSCodes. (https://ms.
codes/blogs/computer-hardware/graphics-card-by-power-consumption).

lenges
Despite significant progress, several challenges remain in GPU-
accelerated computing. Key research directions include:

e Hybrid Architectures: Research into CPU-GPU hybrids bal-
ancing dynamic workloads between the two processors by
utilizing the strengths of both.

e Real-Time Processing: Enhancing the real-time processing
capability of GPU systems for time-sensitive workloads such
as stock market transactions and autonomous vehicle tech-
nologies.

o Security in GPU Computing: Overcoming vulnerability expo-
sures in GPU-powered systems, particularly with the risk of
data leakage being executed through multi-tenancy architec-
tures prevalent in clouds.

, Vol. , No., Article . Publication date: .


https://forums.developer.nvidia.com/t/significant-speed-gap-between-cuda-and-opencl-how-to-debug/57530
https://forums.developer.nvidia.com/t/significant-speed-gap-between-cuda-and-opencl-how-to-debug/57530
https://forums.developer.nvidia.com/t/significant-speed-gap-between-cuda-and-opencl-how-to-debug/57530
https://ms.codes/blogs/computer-hardware/graphics-card-by-power-consumption
https://ms.codes/blogs/computer-hardware/graphics-card-by-power-consumption

12+ Arredondo, Hakimi, Nguyen, and Pugalenthi

e Scalability in Distributed GPU Systems: Discussing how to
seamlessly integrate GPUs into huge-scale distributed plat-
forms for Al, blockchain, and HPC.

In resolving these, subsequent studies will be able to tap into
greater potential from GPU computing and open up even better
parallel processing solutions in the fields of scalable efficiency and
flexibility.

7 Conclusion

Summary of Key Insights

GPU computing in computational workloads has revolutionized
parallel computing, scalability at scale, and acceleration of Al, sci-
entific computing, and networking workloads. Even though GPUs
were initially designed to be used for rendering graphics, they have
now started accelerating state-of-the-art workloads such as dis-
tributed machine learning, real-time packet processing, and HPC.
Such key optimizations as zero-copy memory copies, SIMT exe-
cution optimizations, and dynamic resource-sharing mechanisms
have tuned GPU performance in many areas. The comparison brings
to the fore the reality that although GPUs outperform traditional
CPUs on most parallelizable workloads, their efficiency relies on
workload-dependent optimizations and sound programming models
like CUDA and OpenCL.

Implications for Researchers and Practitioners

For researchers, the findings imply the need for advanced sched-
uling algorithms, CPU-GPU hybrid architectures, and power man-
agement mechanisms to mitigate GPU resource underutilization.
Practitioners can utilize GPU acceleration to make large-scale ap-
plications in Al, blockchain, and real-time data analytics more scal-
able with performance vs. energy efficiency trade-offs. The result
from HPC systems such as MIT Supercloud implies the need for
dynamic resource allocation, multi-level GPU infrastructures, and
workload-aware job scheduling. Such methods will be invaluable
to institutions that will desire to attain optimum computational
throughput at minimum operational cost.

The Evolving Face of GPUs in Computational Acceleration

GPUs will continue to improve as well, blending with domain-
specific accelerators such as Intelligence Processing Units (IPUs)
and Reconfigurable Dataflow Units (RDUs) as computation demands
continue to grow.

Future directions are in the areas of domain-specific architec-
ture, heterogeneous computing platforms, and increasingly sophis-
ticated Al-based optimization algorithms for workload scheduling.
Energy efficiency remains an issue, but emerging power-capping
and load-balancing techniques offer green solutions for large-scale
GPU deployments. Having overcome these challenges, the future of
computing on GPUs will bring unprecedented capability, and with it,
innovation in artificial intelligence, high-performance networking,
and distributed computing architecture.

References

Konstantinos Iliakis, Konstantina Koliogeorgi, Antonios Litke, Theodora Varvarigou,
and Dimitrios Soudris. 2022. GPU accelerated blockchain over key-value database
transactions. IET Blockchain 2 (2022), 1-12. doi:10.1049/blc2.12011

, Vol. , No., Article . Publication date: .

Baolin Li, Rohin Arora, Siddharth Samsi, Tirthak Patel, William Arcand, David Bestor,
Chansup Byun, Rohan Basu Roy, Bill Bergeron, John Holodnak, Michael Houle,
Matthew Hubbell, Michael Jones, Jeremy Kepner, Anna Klein, Peter Michaleas,
Joseph McDonald, Lauren Milechin, Julie Mullen, Andrew Prout, Benjamin Price,
Albert Reuther, Antonio Rosa, Matthew Weiss, Charles Yee, Daniel Edelman, Allan
Vanterpool, Anson Cheng, Vijay Gadepally, and Devesh Tiwari. 2022. Al-Enabling
Workloads on Large-Scale GPU-Accelerated System: Characterization, Opportuni-
ties, and Implications. In 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 1224-1237. doi:10.1109/HPCA53966.2022.00093

Vivek K. Pallipuram, Mohammad Bhuiyan, and Melissa C. Smith. 2011. A comparative
study of GPU programming models and architectures using neural networks - The
Journal of Supercomputing. https://link.springer.com/article/10.1007/s11227-011-
0631-3

Jon Peddie. 2023. What is a GPU? In The History of the GPU-Steps to Invention. Springer,
333-345.

Hongwu Peng, Caiwen Ding, Tong Geng, Sutanay Choudhury, Kevin Barker, and Ang
Li. 2024. Evaluating Emerging AI/ML Accelerators: IPU, RDU, and NVIDIA/AMD
GPUs. arXiv:2311.04417 [cs.AR] https://arxiv.org/abs/2311.04417

Alessandro Tasora, Dan Negrut, and Mihai Anitescu. 1970. GPU-based parallel comput-
ing for the simulation of complex multibody systems with unilateral and bilateral
constraints: An overview. https://link.springer.com/chapter/10.1007/978-90-481-
9971-6_14#citeas

Giorgos Vasiliadis, Lazaros Koromilas, Michalis Polychronakis, and Sotiris Ioannidis.
2014. GASPP: A GPU-accelerated stateful packet processing framework. https:
//www.usenix.org/conference/atc14/technical-sessions/presentation/vasiliadis

Douglas Youvan. 2023. Parallel Precision: The Role of GPUs in the Acceleration of
Artificial Intelligence. doi:10.13140/RG.2.2.21937.76641

Received 24 January 2025; revised 06 March 2025


https://doi.org/10.1049/blc2.12011
https://doi.org/10.1109/HPCA53966.2022.00093
https://link.springer.com/article/10.1007/s11227-011-0631-3
https://link.springer.com/article/10.1007/s11227-011-0631-3
https://arxiv.org/abs/2311.04417
https://arxiv.org/abs/2311.04417
https://link.springer.com/chapter/10.1007/978-90-481-9971-6_14#citeas
https://link.springer.com/chapter/10.1007/978-90-481-9971-6_14#citeas
https://www.usenix.org/conference/atc14/technical-sessions/presentation/vasiliadis
https://www.usenix.org/conference/atc14/technical-sessions/presentation/vasiliadis
https://doi.org/10.13140/RG.2.2.21937.76641

	Abstract
	1 Introduction
	2 GPU Architecture and Programming Models
	2.1 Evolution of GPU Architecture
	2.2 Comparative GPU Architectures
	2.3 GPU Programming Models

	3 GPUs in Artificial Intelligence and Machine Learning
	3.1 Transformative Role of GPUs in AI
	3.2 GPU Frameworks for AI/ML
	3.3 GEmerging AI/ML Accelerators

	4 Large-Scale GPU Computing Systems
	4.1 High-Performance Computing with GPUs
	4.2 Challenges in GPU Resource Management
	4.3 Future Directions for GPU HPC

	5 Specialized Applications of GPU Parallel Computing
	5.1 Physics and Multibody Simulations
	5.2 Blockchain and Database Operations
	5.3 Network Traffic Processing

	6 Comparative Analysis and Future Trends
	7 Conclusion
	References

